Artificial Neural Networks Application to Predict Wheat Yield Using Climatic Data
نویسندگان
چکیده
The goal of this study was to apply artificial neural networks to predict rain-fed wheat yield using meteorological data a few days to few months before harvesting. The climatic observation data used; were mean of daily minimum and maximum temperature, extreme of daily minimum and maximum temperature, sum of daily rainfall, number of rainy days, sum of daily sun hours, mean of daily wind speed, extreme of daily wind speed, mean of daily relative humidity, and sum of daily water requirements that were collected during 1990-1999 in Sararood Station for wheat phenological stages consisting; sowing, germination, emergence, 3 leaves, tillering, stem formation, heading, flowering, milk maturity, wax maturity, full maturity, separately for each growing season. Then, they arranged in a matrix whose rows form each of the statistical years and the columns are meteorological factors at each phenological stage. Finally, the obtained model had the following capabilities: Prediction of wheat yield with maximum errors of 45-60 kg/ha at least two months before full maturity stage, determination of the sensitivity of each phenological stage with respect to meteorological factors, and determination of the priority order and importance of each meteorological factor effective in plant growth and crop yield.
منابع مشابه
Forecasting of rainfall using different input selection methods on climate signals for neural network inputs
Long-term prediction of precipitation in planning and managing water resources, especially in arid and semi-arid countries such as Iran, has a great importance. In this paper, a method for predicting long-term precipitation using weather signals and artificial neural networks is presented. For this purpose, climatic data (large-scale signals) and meteorological data (local precipitation and tem...
متن کاملPredicting the buckling Capacity of Steel Cylindrical Shells with Rectangular Stringers under Axial Loading by using Artificial Neural Networks
A parametric study was carried out in order to investigate the buckling capacity of the vertically stiffened cylindrical shells. To this end ANSYS software was used. Cylindrical steel shells with different yield stresses, diameter-to-thickness ratios (D/t) and number of stiffeners were modeled and their buckling capacities were calculated by displacement control nonlinear static analysis. Radi...
متن کاملApplication of artificial neural networks on drought prediction in Yazd (Central Iran)
In recent decades artificial neural networks (ANNs) have shown great ability in modeling and forecasting non-linear and non-stationary time series and in most of the cases especially in prediction of phenomena have showed very good performance. This paper presents the application of artificial neural networks to predict drought in Yazd meteorological station. In this research, different archite...
متن کاملPrediction of Permanent Earthquake-Induced Deformation in Earth Dams and Embankments Using Artificial Neural Networks
This research intends to develop a method based on the Artificial Neural Network (ANN) to predict permanent earthquake-induced deformation of the earth dams and embankments. For this purpose, data sets of observations from 152 published case histories on the performance of the earth dams and embankments, during the past earthquakes, was used. In order to predict earthquake-induced deformation o...
متن کاملFlood Forecasting Using Artificial Neural Networks: an Application of Multi-Model Data Fusion technique
Floods are among the natural disasters that cause human hardship and economic loss. Establishing a viable flood forecasting and warning system for communities at risk can mitigate these adverse effects. However, establishing an accurate flood forecasting system is still challenging due to the lack of knowledge about the effective variables in forecasting. The present study has indicated that th...
متن کامل